Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater

نویسندگان

  • Patcharee Intanoo
  • Jittipan Chavadej
  • Sumaeth Chavadej
چکیده

The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively. Keywords—Biohydrogen, Alcohol wastewater, Anaerobic sequencing batch reactor (ASBR), Thermophillic operation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biohydrogen Production from Cassava Wastewater in an Anaerobic Fluidized Bed Reactor

The effect of hydraulic retention time (HRT) and organic loading rate (OLR) on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m-d). The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.0...

متن کامل

Hydrogen Production from Starch Wastewater Using Anaerobic Sludge Immobilized on Maghemite Nanoparticle

In this study, hydrogen production from starch wastewater using anaerobic sludge immobilized on maghemite nanoparticles (γ-Fe2O3) was investigated. Two anaerobic baffled reactors (ABR-1 and ABR-2) were operated at organic loading rate (OLR) of 3.63±0.43 g-COD/L.d and hydraulic retention time (HRT) of 10 h. The ABR-1 was inoculated with 3.5 g-VSS/L preheated sludge at 90°C for 30 minutes. The se...

متن کامل

Effect of sulfide inhibition and organic shock loading on anaerobic biofilm reactors treating a low-temperature, high-sulfate wastewater.

To assess the long-term treatment of sulfate- and carbon-rich wastewater at low temperatures, anaerobic biofilm reactors were operated for over 900 days at 20 degrees C and fed wastewater containing lactate and sulfate. Results showed the reactors could be operated at 20 degrees C with a load rate of 1.3 g-chemical oxygen demand (COD)/L x d or less and a sulfur loading rate (SLR) of 0.2 g-S/L x...

متن کامل

Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater

The aim of this study was to evaluate the potential of domestic wastewater for anaerobic hydrogen production. High-strength and ordinary-strength organic loadings of synthetic wastewater, i.e., real-time domestic wastewater with and without a mixture of food waste, were tested. During operation at a high strength loading, the initial pH was maintained at 7 and then gradually decreased, and a pH...

متن کامل

Optimal Hydrogen Production Coupled with Pollutant Removal from Biodiesel Wastewater Using a Thermally Treated TiO2 Photocatalyst (P25): Influence of the Operating Conditions

This work aimed to produce hydrogen (H₂) simultaneously with pollutant removal from biodiesel wastewater by photocatalytic oxidation using a thermally-treated commercial titanium dioxide (TiO₂) photocatalyst at room temperature (~30 °C) and ambient pressure. The effects of the operating conditions, including the catalyst loading level (1-6 g/L), UV light intensity (3.52-6.64 mW/cm²), initial pH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012